SaaS: Lines in the Sand Paid Enrollment Churn, engagement, and upselling metrics are similar across many SaaS companies. But there’s one factor that produces a huge difference across many metrics: asking for payment up front during a trial. Totango, a provider of SaaS customer intelligence and engagement software, has data across more than 100 SaaSContinue reading “Lean Analytics 23”
Author Archives: nada bassam
Lean Analytics 22
E-commerce: Lines in the Sand Before we get into specific e-commerce metrics, we want to reinforce an important dimension of storefront segmentation. There’s a tendency to think of all mobile use as the same. That’s wrong. “One of my pet peeves these days is how ‘mobile’ traffic is defined,” says investor and entrepreneur Derek Szeto.Continue reading “Lean Analytics 22”
Lean Analytics 21
Am I good Enough? One of the biggest questions we wanted to tackle with Lean Analytics is “what’s normal?” It’s something we get asked all the time: “How do I know what’s a normal or ideal value for the metrics I’m tracking? How do I know if it’s going well or not? Should I keepContinue reading “Lean Analytics 21”
Lean Analytics 20
Model + Stage Drives the Metric you track The core idea behind Lean Analytics is this: by knowing the kind of business you are, and the stage you’re at, you can track and optimize the One Metric That Matters to your startup right now. By repeating this process, you’ll overcome many of the risks inherentContinue reading “Lean Analytics 20”
Lean Analytics 19
Stage Five: Scale You have a product that’s sticky. You’ve got virality that’s multiplying the effectiveness of your marketing efforts. And you have revenues coming in to fuel those user and customer acquisition efforts. The final stage for startups is Scale, which represents not only a wider audience, but also entry into new markets, aContinue reading “Lean Analytics 19”
Lean Analytics 18
Stage Four: Revenue At some point, you have to make money. As you move beyond stickiness and virality, your metrics change. You’ll track new data and find a new OMTM as you funnel some of the money you collect back into acquiring new users. Customer lifetime value and customer acquisition cost drive your growth, andContinue reading “Lean Analytics 18”
Lean Analytics 17
Stage three: Virality In 1997, venture capital firm Draper Fisher Jurvetson first used the term viral marketing to describe network-assisted word of mouth.* The firm had seen the power of virality firsthand with Hotmail, which included a vector for infection in every email—the now-famous link at the bottom of a message that invited recipients toContinue reading “Lean Analytics 17”
Lean Analytics 16
Stage two: Stickiness Having climbed inside your market’s head, it’s time to build something. The big question now is whether or not what you’ve built is sticky, so that when you throw users at it, they’ll engage. You want to be, as Rowan Atkinson’s Blackadder put it, “in the stickiest situation since Sticky the stickContinue reading “Lean Analytics 16”
Lean Analytics 15
Stage One: Empathy At the outset, you’re spending your time discovering what’s important to people and being empathetic to their problems. You’re searching through listening. You’re digging for opportunity through caring about others. Right now, your job isn’t to prove you’re smart, or that you’ve found a solution. Your job is to get inside someoneContinue reading “Lean Analytics 15”
Lean Analytics 14
What Stage Are you At? You can’t just start measuring everything at once. You have to measure your assumptions in the right order. To do that, you need to know what stage you’re at. Our Lean Analytics stages suggest an order to the metrics you should focus on. The stages won’t apply perfectly to everyone.Continue reading “Lean Analytics 14”